МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ИНСТИТУТ ИНФОРМАЦИОННЫХ НАУК И ТЕХНОЛОГИЙ БЕЗОПАСНОСТИ Факультет информационных систем и безопасности Кафедра фундаментальной и прикладной математики

АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направление подготовки 01.03.04 Прикладная математика Направленность (профиль) Математика информационных сред

Уровень высшего образования: бакалавриат Форма обучения: очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХ Рабочая программа дисциплины

Составитель:

Канд. тех. наук, доц., профессор кафедры Фундаментальной и прикладной математики А.Д.Козлов

УТВЕРЖДЕНО

Протокол заседания кафедры фундаментальной и прикладной математики $N \ge 10$ от 05.04.2022

ОГЛАВЛЕНИЕ

1.# Пояснительная записка	4#
1.1.# Цель и задачи дисциплины	4#
1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
индикаторами достижения компетенций	4#
1.3. Место дисциплины в структуре образовательной программы	4#
2.# Структура дисциплины	5#
3.# Содержание дисциплины	5#
4.# Образовательные технологии	6#
5.# Оценка планируемых результатов обучения	6#
5.1# Система оценивания	6#
5.2# Критерии выставления оценки по дисциплине	7#
5.3# Оценочные средства (материалы) для текущего контроля успеваемости,	
промежуточной аттестации обучающихся по дисциплине	8#
6.# Учебно-методическое и информационное обеспечение дисциплины	11#
6.1# Список источников и литературы	
6.2# Перечень ресурсов информационно-телекоммуникационной сети «Интернет»	12#
6.3# Профессиональные базы данных и информационно-справочные системы	12#
7.# Материально-техническое обеспечение дисциплины	12#
8.# Обеспечение образовательного процесса для лиц с ограниченными возможностями	
здоровья и инвалидов	13#
9.# Методические материалы	
9.1# Планы практических занятий	
Приложение 1. Аннотация рабочей программы дисциплины	17#

1. Пояснительная записка

1.1. Цель и задачи дисциплины

Цель дисциплины: ознакомление студентов с современными способами организации памяти ЭВМ на логическом и, отчасти, на физическом уровне, а также с методами представления данных в памяти и с алгоритмами их обработки.

Задачи дисциплины: обеспечить овладение будущими специалистами современными методами реализации и применения структур данных для решения естественнонаучных, инженерных и социально-экономических проблем.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с

индикаторами достижения компетенций

индикаторами достижения компетенций		
Компетенция	Индикаторы	Результаты обучения
(код и	компетенций	
наименование)	(код и наименование)	
ПК-3. Способен	ПК-3.1. Владеет	Знать: содержание утверждений и следствий из них,
осуществлять	навыками работы с	используемых для обоснования выбираемых
поиск, изучение и	информационными	математических методов решения прикладных и
разработку новых	системами для	социально-экономических задач; основные приемы
теоретических или	разработки новых	решения математических задач.
практических	теоретических	Уметь: применять полученные знания по дисциплине
проблем, сведений,	положений и решения	при анализе способов решения поставленных задач;
относящихся к	практических проблем	применять математический и программный
решению текущих		инструментарий при решении поставленных задач.
научных		Владеть: способностью производить самостоятельный
исследований,		выбор методов решения; навыками решения основных
производственных		математических задач; навыками анализа и обработки
задач; в		необходимых данных для математической постановки и
информационных		решения задач; навыками анализа и интерпретации
средах находить,		результатов решения задач.
создавать основные	ПК-3.3. Выделяет	Знать: области применения современных структур
элементы будущих	информационные	данных.
математических	потоки, определяет	Уметь: реализовать структуры данных средствами языка
структур или	точки бифуркаций	программирования.
конструктивных		Владеть: конструированием новых типов данных из
математических		стандартных структур.
моделей	ПК-3.4. Строит	Знать: конструирование средствами используемого
	математические	языка программирования новых типов данных,
	модели различных	соответствующих специфике решаемой задачи.
	типов, исследует их	Уметь: эффективно решать задачи выбора структуры
		данных и представления их в ЭВМ в зависимости от
		решаемой задачи и доступных вычислительных ресурсов.
		Владеть: обработкой на ЭВМ данных различной
		структуры, используемых в современных задачах
		проблемного и системного программирования.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Алгоритмы и структуры данных» относится к части, формируемой участниками образовательных отношений блока дисциплин учебного плана. Для освоения дисциплины необходимы знания, умения и владения, сформированные в ходе изучения следующих дисциплин: «Математика в алгоритмических задачах», «Теория графов»,

«Современные технологии программирования в задачах математики», «Функциональное программирование», «Иностранный язык».

В результате освоения дисциплины формируются знания, умения и владения, необходимые для изучения следующих дисциплин и прохождения практик: «Математическое моделирование», «Математические модели обработки изображений», «Дополнительные главы дискретной математики и математической логики», «Имитационное моделирование случайных процессов», «Математические основы моделирования социальных систем», Учебная практика «Научно-исследовательская работа (получение первичных навыков научно-исследовательской деятельности)».

2. Структура дисциплины

Общая трудоёмкость дисциплины составляет 3 з.е., 108 академических часов.

Структура дисциплины для очной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
6	Лекции	18
6	Практические занятия	24
	Bcero:	42

Объем дисциплины в форме <u>самостоятельной работы обучающихся</u> составляет 66 академических часов.

3. Содержание дисциплины

Тема 1. Структуры данных и методы их хранения

Понятие данных. Общие сведения о типах данных. Простые типы данных в ЭВМ. Операции над ними. Структуры данных (логические и физические). Связь структуры данных и алгоритма. Структуры хранения данных

Тема 2. Статические структуры и массивы

Простейшие статические структуры. Общие сведения о линейных структурах данных. Функции адресации, принцип линейной адресации, Одномерные и многомерные массивы. Структуры хранения массивов.

Тема 3. Списки, стеки и очереди

Полустатические структуры данных. Записи. Строки. Линейные динамические связные структуры. Односвязные и двусвязные списки. Нелинейные связные структуры. Многосвязные списки. Операции над списками. Реализации списка. Структуры стека. Операции над стеками. Реализации стека. Применение стеков при разработке

приложений. Очереди. Структура очередей и операции над ними. Реализации очереди.

Тема 4. Нелинейные структуры и графы

Общие сведения о нелинейных структурах данных. Графы. Основные определения и понятия. Примеры графовых структур. Представление графов матрицами и списками.

Тема 5. Пути и поиск в графовых структурах

Пути в графе. Обходы графов. Поиск в глубину и в ширину. Применение рекурсии и итерации. Общие сведения о деревьях. Построение остовных деревьев (каркасов) графа.

Тема 6. Эйлеровы и гамильтоновы пути

Эйлеровы пути в графе. Гамильтоновы пути в графе. Алгоритмы с возвратом.

Тема 7. Пути во взвешенных графах

Взвешенные графы. Кратчайшие пути на графе. Штурманская задача. Алгоритм Форда-Беллмана.

Тема 8. Оптимальные пути в графах

Алгоритм Дейкстры. Упорядочение графа (топологическая сортировка). Поиск минимальных потоков. Алгоритм Флойда-Уоршалла.

Тема 9. Разреженные матрицы

Разреженные матрицы и их приложения. Способы хранения и операции над разреженными матрицами.

4. Образовательные технологии

Для проведения занятий лекционного типа по дисциплине применяются такие образовательные технологии как лекция-визуализация с применением слайд-проектора.

Для проведения *практических занятий* используются такие образовательные технологии как: решение типовых задач для закрепления и формирования знаний, умений, навыков.

В рамках самостоятельной работы студентов проводится консультирование и проверка домашних заданий посредством электронной почты.

В период временного приостановления посещения обучающимися помещений и территории РГГУ для организации учебного процесса с применением электронного обучения и дистанционных образовательных технологий могут быть использованы следующие образовательные технологии:

- видео-лекции;
- онлайн-лекции в режиме реального времени;
- электронные учебники, учебные пособия, научные издания в электронном виде и доступ к иным электронным образовательным ресурсам;
 - системы для электронного тестирования;
 - консультации с использованием телекоммуникационных средств.

5. Оценка планируемых результатов обучения

5.1 Система оценивания

Рорма контроля Макс. количество баллов		о баллов
	За одну работу	Всего
Текущий контроль:		
- домашнее задание	10 баллов	50 баллов
- тестирование	10 баллов	10 баллов
Промежуточная аттестация		40 баллов
(экзамен по билетам)		
Итого за семестр		100 баллов
экзамен		

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала	Традиционная шкала		Шкала ECTS
95 - 100			A
83 - 94	отлично		В
68 - 82	хорошо	зачтено	С
56 – 67	AVEC DE CONTROL VIVA		D
50 – 55	удовлетворительно		Е
20 – 49	неудовлетворительно	YYO DOYYTOYYO	FX
0 – 19		не зачтено	F

5.2 Критерии выставления оценки по дисциплине

Баллы/	Оценка по	Критерии оценки результатов обучения по дисциплине
Шкала ECTS	дисциплине	
100-83/ A,B	отлично	Выставляется обучающемуся, если он глубоко и прочно усвоил теоретический и практический материал, может продемонстрировать это на занятиях и в ходе промежуточной аттестации. Обучающийся исчерпывающе и логически стройно излагает учебный материал, умеет увязывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения. Свободно ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «высокий».
82-68/ C	хорошо	Выставляется обучающемуся, если он знает теоретический и практический материал, грамотно и по существу излагает его на занятиях и в ходе промежуточной аттестации, не допуская существенных неточностей. Обучающийся правильно применяет теоретические положения при решении практических задач профессиональной направленности разного уровня сложности, владеет необходимыми для этого навыками и приёмами. Достаточно хорошо ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «хороший».
67-50/ D,E	удовлетво- рительно	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	неудовлет- ворительно	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических

Баллы/	Оценка по	Критерии оценки результатов обучения по дисциплине
Шкала	дисциплине	
ECTS		
		положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции на уровне «достаточный», закреплённые за дисциплиной, не сформированы.

5.3 Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

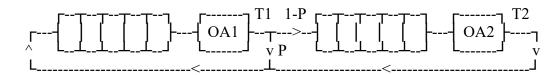
Текущий контроль

Примерные вопросы для тестирования:

- 1. Переменная структура допускает изменение
 - 1) Значений полей.
 - 2) Количества элементов и связей между ними.
 - 3) Названия.
- 2. Вектор содержит
 - 1) Поля с разными названиями.
 - 2) Элементы различных типов.
 - 3) Конечное множества скаляров.
- 3. Для трёхмерного массива вычисление линейной функций адресации требует количества умножений, равного
 - 1) Трём.
 - 2) Одному.
 - 3) Нулю (не требует умножений).
- 4. Двоичный поиск может проводиться, если список
 - 1) Упорядоченный.
 - 2) Неупорядоченный
 - 3) Любой.
- 5. Чтение и запись элементов в очередь производится
 - 1) В любом месте.
 - 2) С одного конца очереди.
 - 3) С разных концов очереди.
- 6. Сколько указателей надо использовать для работы стека
 - 1) Один.
 - 2) Два.
 - 3) Ни одного.
- 7. Представление ориентированного графа из N вершин и M рёбер списком инцидентности требует
 - 1) Мячеек памяти.
 - 2) N ячеек памяти.
 - 3) N+М ячеек памяти.
- 8. Представление неориентированного графа из N вершин и M рёбер списком инцидентности требует
 - 1) N+М ячеек памяти.
 - 2) М ячеек памяти.
 - 3) 2*М ячеек памяти.
- 9. Длину кратчайшего пути во взвешенном графе, имеющем 10000000 вершин, можно найти

- 1) Алгоритмом Форда-Беллмана.
- 2) Алгоритмом поиска в глубину.
- 3) Алгоритмом поиска в ширину.
- 10. Алгоритм поиска в глубину основан на размещении вершин
 - 1) В очереди.
 - 2) В стеке.
 - 3) В множестве.
- 11. Гамильтонов путь в графе проходит точно один раз
 - 1) Через каждую вершину графа.
 - 2) Через каждый цикл графа.
 - 3) Через каждое ребро графа.
- 12. Алгоритм с возвратами при построении Гамильтонова пути в графе является
 - 1) Линейным.
 - 2) Циклическим.
 - 3) Рекурсивным.
- 13. Количество вершин нечётной степени в графе НЕ может быть равно
 - 1) 3.
 - 2) 4.
 - 3) 6.
- 14. Алгоритм Форда-Беллмана можно использовать для графов, содержащих
 - 1) Циклы.
 - 2) Рёбра отрицательной длины.
 - 3) 1) и 2).
- 15. Алгоритм Форда-Беллмана для графа из N вершин и M рёбер, содержащего цикл отрицательной длины, заканчивается после количества шагов, равного
 - 1) N-2.
 - 2) 0 (сразу).
 - 3) Бесконечности (алгоритм зацикливается).
- 16. Алгоритм Дейкстры для графа из N вершин и M рёбер, содержащего цикл отрицательной длины, заканчивается после количества шагов, равного
 - 1) Бесконечности (алгоритм зацикливается).
 - 2) 0 (cpasy).
 - 3) N, но даёт ошибочный результат.
- 17. Алгоритм поиска длины кратчайшего пути для графа без циклов требует предварительной перенумерации вершин в соответствии с
 - 1) Количеством входящих в вершину рёбер.
 - 2) Последовательностью прохождения вершин.
 - 3) Количеством выходящих из вершины рёбер.
- 18. Алгоритм перенумерации вершин в соответствии с последовательностью прохождения вершин для ориентированного графа без циклов из N вершин и M рёбер
- в худшем случае требует времени, пропорционального
 - 1) N*M.
 - 2) N^2 .
 - 3) M.
- 19. Алгоритм поиска кратчайшего пути между всеми парами вершин взвешенного графа матричным умножением по сравнению с последовательным применением алгоритма Дейкстры работает
 - 1) Быстрее.
 - 2) Медленнее.
 - 3) С той же скоростью.
- 20. Алгоритм Флойда-Уоршалла по сравнению с последовательным применением алгоритма Дейкстры работает

- 1) Медленнее.
- 2) С той же скоростью.
- 3) Быстрее.


Примерные варианты домашних заданий:

Домашнее задание №1. Слова текста из малых латинских букв записаны не менее чем через один пробел; текст оканчивается точкой. БЕЗ ИСПОЛЬЗОВАНИЯ конструкции STRING:

- а) написать программу ввода такого текста с клавиатуры;
- б) напечатать все слова, отличающиеся от последнего слова, и совпадающие с начальным отрезком алфавита (a, ab, abc и т.д.).

Домашнее задание №2. Система массового обслуживания состоит из двух обслуживающих аппаратов

(ОА) и двух очередей заявок. Всего в системе обращается 100 заявок.

Заявки поступают в "хвост" каждой очереди; в ОА они поступают из "головы" очереди по одной и обслуживаются по случайному закону за интервалы времени T1 и T2, равномерно распределенные от 0 до 6 и от 1 до 8 единиц времени соответственно. Каждая заявка после OA1 с вероятностью P=0.7 вновь поступает в "хвост" первой очереди, совершая новый цикл обслуживания, а с вероятностью 1-P входит во вторую очередь. В начале процесса все заявки находятся в первой очереди.

Смоделировать процесс обслуживания до выхода из ОА2 первых 1000 заявок, выдавая после обслуживания каждых 100 заявок информацию о текущих и средних длинах и временах ожидания в каждой очереди, а в конце процесса - общее время моделирования и количество заявок, прошедших через ОА1.

Домашнее задание №3. Для двух выделенных вершин графа построить соединяющий их простой путь.

Домашнее задание №4. Задана система двусторонних дорог. Для каждой пары городов найти длину

кратчайшего пути между ними.

Домашнее задание №5. Разреженная (содержащая много нулей) матрица хранится в форме 3 объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- связный список JA, в элементе N k которого находится номер компонент в A и IA, с которых начинается описание столбца N k матрицы A.

Смоделировать операцию умножения хранящихся в этой форме матрицы и вектора-столбца с получением результата в той же форме.

Промежуточная аттестация

Контрольные вопросы по дисциплине:

1. Алгоритмы и данные. Общая характеристика.

- 2. Общие сведения о типах данных.
- 3. Структуры хранения данных
- 4. Одномерные и многомерные массивы.
- 5. Структуры хранения массивов.
- 6. Линейные функции адресации.
- 7. Общие сведения о линейных структурах данных.
- 8. Операции над списками.
- 9. Реализации списка.
- 10. Структуры стека.
- 11. Операции над стеками.
- 12. Реализации стека.
- 13. Применение стеков при разработке приложений.
- 14. Очереди. Структура очередей и операции над ними.
- 15. Реализации очереди.
- 16. Общие сведения о нелинейных структурах данных.
- 17. Графы. Основные определения.
- 18. Представление графов матрицами
- 19. Представление графов списками.
- 20. Пути в графе.
- 21. Обходы графов. Поиск в глубину и в ширину. Применение рекурсии.
- 22. Общие сведения о деревьях.
- 23. Построение остовных деревьев
- 24. Эйлеровы пути в графе.
- 25. Гамильтоновы пути в графе. Алгоритмы с возвратом.
- 26. Взвешенные графы. Кратчайшие пути на графе.
- 27. Алгоритм Форда-Беллмана.
- 28. Алгоритм Дейкстры.
- 29. Алгоритм Флойда-Уоршалла.
- 30. Упорядочение графа (топологическая сортировка).
- 31. Разреженные матрицы. Способы хранения.
- 32. Операции над разреженными матрицами.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1 Список источников и литературы

Литература

Основная

- 1. Подбельский В.В. Язык СИ++: учеб. пособие для студентов вузов, обучающихся по направлениям "Прикладная математика" и "Вычислительные машины, комплексы, системы и сети" / В. В. Подбельский. 5-е изд. М.: Финансы и статистика, 2008. 559 с.: рис.,табл.
- 2. Ахо Альфред В. Структуры данных и алгоритмы: [пер. с англ.] / Альфред В. Ахо, Джон Э. Хопкрофт, Джеффри Д. Ульман. М.: Вильямс, 2010. 391 с.
- 3. Алгоритмы : построение и анализ : [пер. с англ.] / Томас Кормен [и др.]. 2-е изд. М. ; СПб. ; Киев : Вильямс, 2010. 1290 с.

Дополнительная

1. Дейтел Харви М. Как программировать на C++ / X. М. Дейтел, П. Дж. Дейтел; пер. с англ. под ред. В. В. Тимофеева. - 5-е малое изд. - М.: БИНОМ, 2007. - 799 с.: рис. +2008г.

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет».

Иванова Г.С. Технология программирования: Учебник для вузов. – М.: Изд. МГТУ им. Н.Э.Баумана, 2002. [Электронный ресурс]. - Режим доступа: http://progbook.ru/technologiya-programmirovaniya.html

- 2. Подбельский В.В. Язык Си++: Учебное пособие. М.: Финансы и статистика, 2003. [Электронный ресурс]. Режим доступа: http://progbook.ru/c/737-podbelskii-programmiovanie-na-yazyke-si.html)
- 3. Axo A.B., Хопкрофт Д.Э., Ульман Д.Д. Структуры данных и алгоритмы. М., Вильямс, 2003. [Электронный ресурс]. Режим доступа: http://razym.ru/naukaobraz/obrazov/181547-aho-a-ulman-d-hopkroft-d-struktury-dannyh-i-algoritmy.html
- 4. Дейтел Х.М., Дейтел П.Дж. Как программировать на C++. М.: Бином, 2001. [Электронный ресурс]. Режим доступа: http://razym.ru/71372-x-m-dejtel-p-dzh-dejtel-kak-programmirovat-na-c-5.html
- 5. Т. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М. МЦНМО, 2005. [Электронный ресурс]. Режим доступа: http://padabum.com/d.php?id=28453

Национальная электронная библиотека (НЭБ) www.rusneb.ru ELibrary.ru Научная электронная библиотека www.elibrary.ru

6.3 Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7. Материально-техническое обеспечение дисциплины

Для обеспечения дисциплины используется материально-техническая база образовательного учреждения:

- для лекций: учебные аудитории, оснащённые доской, компьютером или ноутбуком, проектором (стационарным или переносным) для демонстрации учебных материалов.

Состав программного обеспечения:

- 1. Windows
- 2. Microsoft Office
- 3. Kaspersky Endpoint Security
- для практических занятий: компьютерный класс или лаборатория, оснащённые доской, компьютером или ноутбуком для преподавателя, компьютерами для обучающихся, проектором (стационарным или переносным) для демонстрации учебных материалов.

Состав программного обеспечения:

- 1. Windows
- 2. Microsoft Office
- 3. Microsoft Visual Professional 2019
- 4. Mozilla Firefox
- 5. Kaspersky Endpoint Security

8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением или могут быть заменены устным ответом; обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; письменные задания оформляются увеличенным шрифтом; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих: лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования; письменные задания выполняются на компьютере в письменной форме; экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла.
 - для глухих и слабослышащих: в печатной форме, в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих: устройством для сканирования и чтения с камерой SARA CE; дисплеем Брайля PAC Mate 20; принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих: автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих; акустический усилитель и колонки;

•для обучающихся с нарушениями опорно-двигательного аппарата: передвижными, регулируемыми эргономическими партами СИ-1; компьютерной техникой со специальным программным обеспечением.

9. Методические материалы

9.1 Планы практических занятий

Тема 1. Структуры данных и методы их хранения.

Задания:

1. Изучить разделы темы.

Понятие данных. Общие сведения о типах данных. Простые типы данных в ЭВМ. Операции над ними. Структуры данных (логические и физические). Связь структуры данных и алгоритма. Структуры хранения данных

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Понятие данных.
 - Общие сведения о типах данных.
 - Простые типы данных в ЭВМ. Операции над ними.
 - Структуры данных (логические и физические).
 - Связь структуры данных и алгоритма.
 - Структуры хранения данных

Тема 2. Статические структуры и массивы.

Задания:

1. Изучить разделы темы.

Простейшие статические структуры. Общие сведения о линейных структурах данных. Функции адресации, принцип линейной адресации, Одномерные и многомерные массивы. Структуры хранения массивов.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Простейшие статические структуры.
 - Общие сведения о линейных структурах данных.
 - Функции адресации, принцип линейной адресации.
 - Одномерные и многомерные массивы.
 - Структуры хранения массивов.

Тема 3. Списки, стеки и очереди.

Задания:

1. Изучить разделы темы.

Полустатические структуры данных. Записи. Строки. Линейные динамические связные структуры. Односвязные и двусвязные списки. Нелинейные связные структуры. Многосвязные списки. Операции над списками. Реализации списка. Структуры стека. Операции над стеками. Реализации стеков при разработке приложений. Очереди. Структура очередей и операции над ними. Реализации очереди.

Указания по выполнению заданий:

1. Ответить на контрольные вопросы

- Полустатические структуры данных. Записи. Строки.
- Линейные динамические связные структуры. Односвязные и двусвязные списки.
- Нелинейные связные структуры. Многосвязные списки.
- Операции над списками. Реализации списка.
- Структуры стека. Операции над стеками. Реализации стека.
- Применение стеков при разработке приложений.
- Очереди. Структура очередей и операции над ними. Реализации очереди.

Тема 4. Нелинейные структуры и графы.

Задания:

1. Изучить разделы темы.

Общие сведения о нелинейных структурах данных. Графы. Основные определения и понятия. Примеры графовых структур. Представление графов матрицами и списками.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
- Общие сведения о нелинейных структурах данных.
- Графы: основные определения и понятия.
- Примеры графовых структур.
- Представление графов матрицами и списками.

Тема 5. Пути и поиск в графовых структурах.

Задания:

1. Изучить разделы темы.

Пути в графе. Обходы графов. Поиск в глубину и в ширину. Применение рекурсии и итерации. Общие сведения о деревьях. Построение остовных деревьев (каркасов) графа.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Пути в графе.
 - Обходы графов.
 - Поиск в глубину и в ширину.
 - Применение рекурсии и итерации.
 - Общие сведения о деревьях.
 - Построение остовных деревьев (каркасов) графа.

Тема 6. Эйлеровы и гамильтоновы пути.

Задания:

1. Изучить разделы темы.

Эйлеровы пути в графе. Гамильтоновы пути в графе. Алгоритмы с возвратом.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Эйлеровы пути в графе.
 - Гамильтоновы пути в графе.
 - Алгоритмы с возвратом.

Тема 7. Пути во взвешенных графах.

Задания:

1. Изучить разделы темы.

Взвешенные графы. Кратчайшие пути на графе. Штурманская задача. Алгоритм Форда-Беллмана.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Взвешенные графы.
 - Кратчайшие пути на графе
 - Штурманская задача.
 - Алгоритм Форда-Беллмана.

Тема 8. Оптимальные пути в графах

Задания:

1. Изучить разделы темы.

Алгоритм Дейкстры. Упорядочение графа (топологическая сортировка). Поиск минимальных потоков. Алгоритм Флойда-Уоршалла.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Алгоритм Дейкстры.
 - Упорядочение графа (топологическая сортировка).
 - Поиск минимальных потоков.
 - Алгоритм Флойда-Уоршалла.

Тема 9. Разреженные матрицы.

Задания:

1. Изучить разделы темы.

Разреженные матрицы и их приложения. Способы хранения и операции над разреженными матрицами.

Указания по выполнению заданий:

- 1. Ответить на контрольные вопросы
 - Разреженные матрицы и их приложения.
 - Способы хранения и операции над разреженными матрицами.

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина «Алгоритмы и структуры данных» реализуется на факультете информационных систем и безопасности кафедрой фундаментальной и прикладной математики.

Цель дисциплины: ознакомление студентов с современными способами конструирования алгоритмов обработки информации, оценкой сложности и эффективности алгоритмов, а также с выбором структур данных для их хранения и использования.

Задачи: обеспечить овладение будущими специалистами современными методами изучения свойств и закономерностей алгоритмов и разнообразных формальных моделей их представления.

Дисциплина направлена на формирование следующих компетенций:

• ПК-3. Способен осуществлять поиск, изучение и разработку новых теоретических или практических проблем, сведений, относящихся к решению текущих научных исследований, производственных задач; в информационных средах находить, создавать основные элементы будущих математических структур или конструктивных математических моделей.

В результате освоения дисциплины обучающийся должен:

Знать: содержание утверждений и следствий из них, используемых для обоснования выбираемых математических методов решения прикладных и социально-экономических задач; основные приемы решения математических задач; области применения современных структур данных; конструирование средствами используемого языка программирования новых типов данных, соответствующих специфике решаемой задачи.

Уметь: применять полученные знания по дисциплине при анализе способов решения поставленных задач; применять математический и программный инструментарий при решении поставленных задач; выбирать наиболее эффективные алгоритмы для решения задач; реализовать структуры данных средствами языка программирования; эффективно решать задачи выбора структуры данных и представления их в ЭВМ в зависимости от решаемой задачи и доступных вычислительных ресурсов.

Владеть: способностью производить самостоятельный выбор методов решения; навыками решения основных математических задач; навыками анализа и обработки необходимых данных для математической постановки и решения задач; навыками анализа и интерпретации результатов решения задач конструированием новых типов данных из стандартных структур; обработкой на ЭВМ данных различной структуры, используемых в современных задачах проблемного и системного программирования.

По дисциплине предусмотрена промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы.